Saturday 27 January 2018

Matlab, processamento de sinal, caixa de ferramentas, média móvel


Eu preciso calcular uma média móvel em uma série de dados, dentro de um loop for. Eu tenho que obter a média móvel em N9 dias. A matriz de computação é uma série de 365 valores (M), que em si são valores médios de outro conjunto de dados. Eu quero traçar os valores médios dos meus dados com a média móvel em um gráfico. Eu gritei um pouco sobre as médias móveis e o comando conv e encontrei algo que eu tentei implementar no meu código .: então, basicamente, eu calculo o meu significado e traço-o com uma média móvel (errada). Eu escolhi o valor de Wts diretamente do site Mathworks, então isso é incorreto. (Fonte: mathworks. nlhelpeconmoving-average-trend-estimate. html) Meu problema, porém, é que eu não entendo o que é isso. Alguém poderia explicar Se isso tem algo a ver com os pesos dos valores: isso é inválido neste caso. Todos os valores são ponderados o mesmo. E se eu estou fazendo isso inteiramente errado, eu poderia obter alguma ajuda com isso, meus mais sinceros agradecimentos. Perguntou 23 de setembro 14 às 19:05 Usando conv é uma excelente maneira de implementar uma média móvel. No código que você está usando, é o quanto você está pesando cada valor (como você adivinhou). A soma desse vetor deve ser sempre igual a uma. Se você deseja pesar cada valor de forma uniforme e fazer um tamanho N, mover o filtro, então você gostaria de fazer. Usando o argumento válido em conv resultaria em ter menos valores na Ms do que em M. Use o mesmo se você não se importar com os efeitos de Zero preenchimento. Se você tiver a caixa de ferramentas de processamento de sinal, você pode usar o cconv se quiser experimentar uma média móvel circular. Algo como Você deve ler a documentação conv e cconv para obter mais informações se você não tiver. Você pode usar o filtro para encontrar uma média em execução sem usar um loop for. Este exemplo encontra a média de execução de um vetor de 16 elementos, usando um tamanho de janela de 5. 2) liso como parte da Curva Fitting Toolbox (que está disponível na maioria dos casos) yy liso (y) suaviza os dados no vetor de coluna Usando um filtro de média móvel. Os resultados são retornados no vetor da coluna yy. O intervalo padrão para a média móvel é 5,29 setembro, 2017 Média em movimento pela convolução O que é a média móvel e o que é bom para Como a média móvel é feita usando a convolução A média móvel é uma operação simples usada geralmente para suprimir o ruído de um sinal: nós Defina o valor de cada ponto para a média dos valores em sua vizinhança. Por uma fórmula: Aqui x é a entrada e y é o sinal de saída, enquanto o tamanho da janela é w, supostamente estranho. A fórmula acima descreve uma operação simétrica: as amostras são retiradas de ambos os lados do ponto real. Abaixo está um exemplo da vida real. O ponto em que a janela é colocada é realmente vermelho. Valores fora de x devem ser zeros: para brincar e ver os efeitos da média móvel, dê uma olhada nesta demonstração interativa. Como fazê-lo por convolução Como você pode ter reconhecido, o cálculo da média móvel simples é semelhante à convolução: em ambos os casos, uma janela é deslizada ao longo do sinal e os elementos na janela são resumidos. Então, tente dar o mesmo ao usar a convolução. Use os seguintes parâmetros: A saída desejada é: Como primeira abordagem, vamos tentar o que obtem ao convolver o sinal x pelo seguinte k kernel: a saída é exatamente três vezes maior do que o esperado. Também pode ser visto que os valores de saída são o resumo dos três elementos na janela. É porque durante a convolução a janela é deslizada, todos os elementos nele são multiplicados por um e depois resumidos: yk 1 cdot x 1 cdot x 1 cdot x Para obter os valores desejados de y. A saída deve ser dividida por 3: por uma fórmula que inclua a divisão: Mas não seria o ideal para fazer a divisão durante a convolução. Aqui vem a idéia ao reorganizar a equação: então usaremos o seguinte k kernel: desta forma, vamos Obtenha o resultado desejado: Em geral: se queremos fazer uma média móvel por convolução com um tamanho de janela de w. Devemos usar o seguinte k kernel: Uma função simples que faz a média móvel é: Um exemplo de uso é: Documentação Este exemplo mostra como usar filtros médios móveis e reescalonamento para isolar o efeito de componentes periódicos da hora do dia em leituras horárias de temperatura , Bem como remover o ruído indesejável da linha de uma medida de tensão de circuito aberto. O exemplo também mostra como alisar os níveis de um sinal de relógio, preservando as bordas usando um filtro mediano. O exemplo também mostra como usar um filtro Hampel para remover grandes outliers. Motivation Smoothing é como descobrimos padrões importantes em nossos dados, deixando de lado as coisas que não têm importância (ou seja, o ruído). Usamos a filtragem para executar esse alisamento. O objetivo do suavização é produzir mudanças lentas de valor, de modo que seja mais fácil ver tendências em nossos dados. Às vezes, quando você examina dados de entrada, você deseja suavizar os dados para ver uma tendência no sinal. No nosso exemplo, temos um conjunto de leituras de temperatura em Celsius tomadas a cada hora no Aeroporto de Logan durante todo o mês de janeiro de 2017. Note que podemos visualizar visualmente o efeito que a hora do dia tem nas leituras de temperatura. Se você está interessado apenas na variação diária da temperatura ao longo do mês, as flutuações horárias só contribuem com o ruído, o que dificulta a discernição das variações diárias. Para remover o efeito da hora do dia, gostaríamos agora de suavizar nossos dados usando um filtro de média móvel. Um filtro de média móvel Na sua forma mais simples, um filtro médio móvel de comprimento N leva a média de cada N amostras consecutivas da forma de onda. Para aplicar um filtro de média móvel a cada ponto de dados, nós construímos nossos coeficientes de nosso filtro de modo que cada ponto seja igualmente ponderado e contribua 124 para a média total. Isso nos dá a temperatura média em cada período de 24 horas. Retardamento do filtro Observe que a saída filtrada está atrasada em cerca de doze horas. Isto é devido ao fato de nosso filtro de média móvel ter um atraso. Qualquer filtro simétrico de comprimento N terá um atraso de (N-1) 2 amostras. Podemos explicar esse atraso manualmente. Extraindo diferenças médias Alternativamente, também podemos usar o filtro de média móvel para obter uma melhor estimativa de como a hora do dia afeta a temperatura geral. Para fazer isso, primeiro, subtrair os dados suavizados das medidas horárias de temperatura. Em seguida, segmente os dados diferenciados em dias e leve a média em todos os 31 dias do mês. Extraindo o envelope de pico Às vezes, também gostaríamos de ter uma estimativa variável suave de como os altos e baixos do nosso sinal de temperatura mudam diariamente. Para fazer isso, podemos usar a função de envelope para conectar altas e baixas extremas detectadas em um subconjunto do período de 24 horas. Neste exemplo, garantimos que haja pelo menos 16 horas entre cada extremo alto e extremo baixo. Nós também podemos ter uma noção de como os altos e baixos estão tendendo tomando a média entre os dois extremos. Filtros médios em movimento ponderados Outros tipos de filtros médios móveis não pesam cada amostra de forma igual. Outro filtro comum segue a expansão binomial de (12,12) n Este tipo de filtro se aproxima de uma curva normal para valores grandes de n. É útil para filtrar o ruído de alta freqüência para pequenos n. Para encontrar os coeficientes para o filtro binomial, convolve 12 12 com ele próprio e, então, convoluciona a saída com 12 12 um número de vezes prescrito. Neste exemplo, use cinco iterações totais. Outro filtro um pouco semelhante ao filtro de expansão gaussiano é o filtro exponencial de média móvel. Este tipo de filtro de média móvel ponderada é fácil de construir e não requer um grande tamanho de janela. Você ajusta um filtro de média móvel ponderada exponencialmente por um parâmetro alfa entre zero e um. Um maior valor de alfa terá menor alisamento. Amplie as leituras por um dia. Escolha o seu país

No comments:

Post a Comment